.. _sphx_glr_auto_examples_Solid_State_Physics_plot_Dyson.py: Dyson equation ============== A dyson equation. .. image:: /auto_examples/Solid_State_Physics/images/sphx_glr_plot_Dyson_001.png :align: center .. code-block:: python import matplotlib.pyplot as plt from feynman import Diagram # Set up the figure and ax fig = plt.figure(figsize=(10,1.5)) ax = fig.add_axes([.0,.0,1.,1.], frameon=False) ax.set_xlim(0, 1.0) ax.set_ylim(0, .15) l = 0.15 # Length of the propagator txt_l = 0.05 # Padding around the symbol op_l = 0.08 # Size of the operator G_style = dict(arrow=True, arrow_param={'width':0.02, 'length': 0.05}, style = 'double') G0_style = dict(arrow=True, arrow_param={'width':0.02, 'length': 0.05}, style = 'simple') text_prop = dict(y=0.02, fontsize=20) D = Diagram(ax) # Left hand side v11 = D.vertex(xy=[0.05, 0.06]) v12 = D.vertex(v11.xy, dx=l) G = D.line(v11, v12, **G_style) G.text("$G$", **text_prop) # Symbol D.text(v12.x + txt_l, v12.y, "=") # First term v21 = D.vertex(v12.xy, dx=2*txt_l) v22 = D.vertex(v21.xy, dx=l) G0 = D.line(v21, v22, **G0_style) G0.text("$G_0$", **text_prop) # Symbol D.text(v22.x + txt_l, v22.y, "+") # Second term v31 = D.vertex(v22.xy, dx=2*txt_l) v32 = D.vertex(v31.xy, dx=l) v33 = D.vertex(v32.xy, dx=op_l) v34 = D.vertex(v33.xy, dx=l) D.line(v31, v32, **G0_style) D.line(v33, v34, **G_style) O = D.operator([v32,v33]) O.text("$\Sigma$") # Plot and show D.plot() plt.show() **Total running time of the script:** ( 0 minutes 0.060 seconds) .. only :: html .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: plot_Dyson.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: plot_Dyson.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_